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SUMMARY 

Turbulence modelling is done traditionally in fluid mechanics departments. However, mathematical tools 
such as frame invariance, multiple scale expansions and the like are of great help. 

We shall demonstrate these facts by applying mathematical and numerical tools to  the k--E model. We 
shall investigate wall laws, Reynolds hypothesis, positivity of k and E and flows with multiple scales. 

We shall also take this opportunity to review some mathematical results relevant to turbulence modelling. 
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1. TURBULENCE 

The Navier-Stokes equations for incompressible fluids are capable of turbulence, at least in 3-D: 

a,u + uvu + vp - V A U  =f, v . u  = 0 

in a domain R, with velocity u given on its boundary r and at time zero. In general one is 
interested in the solution for large times. In practice the flow does not seem to depend much upon 
initial conditions: the flow around a car, for instance, does not really depend on its acceleration 
history. 

There are many ways ‘to forget’ initial conditions for a flow. One classifies four regimes. 

(a) Steady flows. 
(b) Time-periodic flows. 
(c) Quasi-periodic flows: the Fourier transform t + F(t )  = Iu(x, t)I has a discrete spectrum and 

(d) Chaotic flows with strange attractors: (F(nk)} ,  has dense regions of points filling a com- 

Chaotic flow could be a mathematical dejinition of turbulence. The following points are under 

( 1 )  Whether there exists attractors, and if so, can we characterize-any of their properties? 
(Hausdorff dimension, inertial manifold, . . . , cf. References 1-4 and the bibliography 
therein). 

(2) Does u(x, t) behave in a stochastic way and if so, by which law? Can we deduce some 
equations for average quantities such as U, IuIz, IV x uI2,  this is the problem of turbulence 
modelling. 

two frequencies at least are not commensurable. 

plete zone of space. 

study: 

~~ 
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Here are the main results related to attractors for the Navier-Stokes equations. 
Consider the incompressible Navier-Stokes equations with uy = 0, f independent of t, and 

52 a subset of R Z .  This system has an attractor whose Hausdorff dimension is between cRe4l3 and 
C R e 2  where Re = Jfdiam (52)/v (cf. References 4-6). These results are interesting because they 
give an upper bound on the number of points needed to calculate such flows (this number is 
therefore at least proportional to v -  9/4). 

In three dimensions, it is not known that the incompressible Navier-Stokes equations with the 
same boundary conditions has an attractor but if an attractor exists and is (roughly) bounded by 
M in W1*ao, then its dimension is less than CM3/4v-9/4 (cf. Reference 4). 

Even if these results are refined the problem of turbulence modelling remains because these 
upper bounds for the number of computational points (or degrees of freedom are too large for 
practical applications. 

2. WALL LAWS 

Turbulence is not the only numerical difficulty for the Navier-Stokes equations. In the vicinity of 
static walls, the velocity passes from 0 to 0(1) over a distance 6 = O(Jv). Numerical simulations 
will have to take this fact into account by refining the mesh accordingly in the boundary layers. 
Wall laws are an attempt to remove this constraint. 

2.1. The basic idea 

6(x) be the boundary layer thickness above r and let 
The basic idea is to remove boundary layers from the computational domain (Figure 1). Let 

Bd = {X - n(x)A: X E  r, 1 ~ ] 0 , 6 ( x ) [ }  

where n is the outer normal. The computational domain is now Qd = $2 - Bd and the new 
boundary C = XId replaces r. 

Of course we need a boundary condition for u on C. One possibility is to use a Taylor 
expansion of u at x’  + G(x’)n(x’)  which is a point of when x’ E C: 

au 
an 

u(x’ + G(x’)n(x’ ) )  = u(x’)  + S(x’)  - ( x ’ )  + o(6) 

Figure 1. An aerofoil with rough surface. The boundary condition is applied on C rather than on r. To find the new 
boundary condition, an auxiliary problem is solved on a representative cell Y with periodic boundary conditions on the 

vertical sides 
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Therefore, ulr = 0 implies 

au 
an 

u + 6 - = 0  onC.  

2.2. Wall laws for rough boundaries 

However, this works only if annu is smooth in Bh. Boundary layers do not satisfy this property 
everywhere; so another technique must be used namely a multiple scale expansion (homogeniza- 
tion). The method is easy to understand when it is used to account for wall roughness. 

So consider an aerodynamic wing profile r with very fine periodic irregularities on the surface 
(Figure 1). Consider a flat surface C just above r. One seeks a boundary condition on C which has 
the same effect. Following Carrau and Le Tallec,’ we assume that the flow is stationary and we 
consider two regions again, Bd below C, i.e. between r and C, and JRd above X. Because Bs is thin it 
is conceivable that the flow is somewhat xl-periodic below C. Let Y be a cell of periodicity. If 
U,  = ul,, was known the flow below C would be solution of Navier-Stokes equations, 

uVu+Vp-vAu=O, V . u = O  in Y 

U I r = O ,  ulI,= Ul,, u 2 J z = 0 ,  u,p,x,-periodic 

The condition u21z = 0 means that C is a stream line, which is true as a first approximation. 
The solution of this problem depends non-linearly on U, .  So g(U,)  = 8ul/anlz is some 

non-linear function of U,. The function u -+ g(u) can be tabulated by solving the problem in 
Y several times with different values of U z .  

Above C, u is also solution of the Navier-Stokes equations so matching u and Vu on C requires 
the following boundary conditions: 

u2 = 0 on C 

This is called wall law. In effect, it removes the regions of strong gradients from the computational 
domain at the expense of a more complicated boundary condition. This method can be justified 
by homogenization in the case of Stokes equations.’ 

2.3. Wall laws for  turbulent boundary layers 

The previous analysis applies to stationary flows. Consider now the case of an aerofoil. Near 
the stagnation point a boundary layer develops. In two dimensions it is correctly described by the 
Falkner-Skan equation. Then the solution becomes unstable and there is a transition to 
a time-dependent state. Further down stream the solution becomes fully ‘turbulent’, its numerical 
simulation becomes almost impossible and turbulence modelling is necessary. 

Experiments show some universality in the behaviour of turbulent-attached boundary layers. 
More precisely if x1 denotes the direction of the mean flow parallel to the wall, and x2 is the 

co-ordinate in the normal direction, define ..=pi , y * = >  V y + = -  y u + = -  U 
ax2 x,=o Y*’ U* 

where U is the time averaged velocity. Then experiments show that in the so-called logarithmic 
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layer, when 20 < y +  < 100, the scaled mean flow u’, is a log function of y + :  

1 

x U +  = - logy+ + 5.5, x = 0.41. 

The constant x is the von Karman constant. This is a non-linear relation between u and au/dn; it 
can be used to establish wall laws in place of the auxiliary Navier-Stokes equations of Section 2.2 
with periodic conditions in Y. Usually one seeks a 6 so that C is in the logarithmic layer, and then 
solves the Navier-Stokes equations with the following boundary conditions, called wall-law: 

where n is the normal and s a tangent to X, x = 0.41, fl  = 2.26. 

tions. In practice, it is necessary to verify, a posteriori, that 
Pares9 showed that the Navier-Stokes equations are well posed with these boundary condi- 

3. REYNOLDS STRESS AND FRAME INVARIANCE 

If one writes u = U + u’ when U is the mean flow (defined via a filter (-)) and u’ the turbulent 
fluctuations then the filtered Navier-Stokes equations are 

a,u + uvu + V P  - V A U  + v . R = 0, v . u = o 
The ‘Reynolds Stress tensor’ is R = - (u’ @ u ’ ) .  Let M be a rotation matrix, that is, which 
verifies 

(MTM)k j  = MikMij = (MMT) , j  = MkiMji = 6,, 

Let x = M y  then, if u denotes the velocity in the y variable, 

dx dy 
dt dt 

u = -  = M -  = M U  

It is not hard to show that 

a,u + uvu  + vp - VAU = M(a+ + Ov,v + v,p - V A ~ ~ )  

So the Navier-Stokes equations are rotation invariant. 
Now it follows from the formulae above that 

V,U + V,uT = M(V,U + VYuT)MT 

This allows us to evaluate the Reynolds stress in both frames of reference: 

V;R(V,u + V p T )  = M V ; [ M T R ( M [ V Y u  + V Y u T ] M T ) M ]  

Let u be a solution of Reynolds’ equations. Then u will satisfy the same equations in the y-frame if 
and only if 

M T R ( M  [ V,U + VYuT] M T ) M  = R(V,V + VYoT)  

for all v with V ;  u = 0 and all M with M -’ = M T .  Since all matrices A with zero trace are 
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spanned by V,v + V,vT we-must ask that 

M T R ( M A M T ) M  = R ( A )  VA, M with M - '  = M T ,  trA = 0 

Proposition 1 (Proof in Reference 10). To be frame invariant, the only possible form for 
a symmetric matrix R, function of another symmetric matrix A E R d + d ,  is 

R ( A ) = a o l + a l A + ~ . . + a d - l A d - '  

where the ai are functions of the invariants of A only. 

Corollary 2. In two dimensions, frame invariance and the assumption that Reynolds' tensor be 
a function of Vu + VuT only, imply that Reynolds' equations are 

a,u + uvu + v p  - v . [v , ( lvu  + vuT1)(vu + vuT) ]  = 0, v . u  = o 
Remark that in three dimensions the same imply 

R(Vu + VuT) = a1 + v,(VU + VuT) + ~ ( V U  + VuT)' 

where a, vT and 1 are functions of IVu + VuTl and I(Vu + V U ~ ) ~ I  only. This justifies Smagorinsky's 
turbulence model" where vT is a linear function of its argument. It also says that Reynold's 
hypothesis is better for 2-D mean flows than for 3-D mean flows. 

4. POSITIVITY IN THE k--E MODEL 

Let 
a 1 

D - - + + V ,  E = - I V U + V U ~ ~ ~  
- at 2 

The equations for k, the turbulent kinetic energy and E,  the rate of turbulent energy dissipation, as 
proposed in Reference 12 are: 

E 2  
D t e - c I k E - V .  ( 7 )  c,-VE + ~ 2 - = 0  k 

with cp = 0.09, c, = 0.07, c1 = 0.126 and c2 = 1.92. They are coupled with the Reynolds equations 
with vT = c,k'/E. 

It is possible to justify partially this model. One must assume that turbulence is isotropic at the 
small scale level, so that means can be replaced by volume averages and that transport by 
turbulence yields diffusion. The second assumption is that frame invariance applies to R and to 
S = (V x u 0 V x u) but the coefficients may depend also upon k and E.  The third assumption is 
that (IV(V x u)I2)  is proportional to .s2/k. For physical and mathematical reasons, it is essential 
that the system of partial differential equations for u, p ,  k, E yields positive values for k and E.  

4.1. Alternative forms 

Now let 0 = k/E. Then 

1 k 
& E2 

D z O = - D , k - - D D , ~ = 0 2 E ( ~ , - ~ 1 ) - 1  
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D,8 - 0 2 E ( c ,  - el)  + 1 - c2 = (c ,  - c,)8'Ak + c,kOA8 

+ 4sign(k)(c, - c , ) O 2 \ V J M l 2  + (c, + 2 ~ , ) 8 V k - V 8  - c,kIV812 

4.2. Positivity and exponential growth without viscosity 

autonomous ordinary differential equation on the steam lines: 
If there were no viscous terms in the equations for k and E then the 8 equation would be an 

D,8 - 0 2 E ( c ,  - e l )  + 1 - c2 = 0 

It has always a positive bounded solution when the initial and boundary data are positive because 
c, < c1 and c2 > 1. Similarly, in the absence of viscous terms the equation for k reduces to 

which has always a positive solution for positive data but it grows exponentially when c,02E > 1. 

4.3. Positivity in the case of Dirichlet boundary data 

Let us analyse the system for 8, k by using the maximum principle. Assume positive initial data 
and positive Dirichlet boundary data and suppose that the solution is continuously differentiable. 
Let t* be the first instant for which 8 reaches zero and assume that k is positive on [0, t * ] .  Let x* 
be the point where this happens. Because we have assumed 8 and k smooth and because x* 
cannot be on the boundary (where 8 is given), x* must be a minimum for 8 so we have 

1 

V 8 ( x * ,  t * )  = 0, 8(x* ,  t * )  = 0 (and if 8 E C2: AB(x*, t * )  2 0)  

By writing the 8 equation at this point, we obtain: 

ate = c2 - 1 > o 
This is a contradiction; indeed t + 8(x* ,  t )  has been decreasing up to t* so a,B was negative and 
suddenly it becomes positive; thus 8 is not continuously differentiable (in any case it grows again 
away from zero). 

Now let x o ( t )  be the minimum of k(x ,  t )  in x. If x o ( t )  is on the boundary then the minimum 
being positive, k is positive at time t .  If x o ( t )  is not on the boundary then V k  is zero and Ak 2 0 at 
{ x o ( t ) ,  t } .  So the k-equation: 

k 
8 

a,k + U V k  - c,kBE - c,k8Ak - c,V(Bk).Vk + - = 0 

yields 

3,k 2 k c,BE - - at ( x o ( t ) ,  t } .  ( 3 
Now let ~ ( t )  = k(xo( t ) ,  t).  By construction 8 , ~  = d,k so the equation above implies 

K(t) = min X k(x ,  t )  2 K(0)exp (1: [c,OE - f ] ( x 0 ( t f ) ,  t')dt') 

Therefore k is strictly positive. 



APPLIED MATHEMATICS AND TURBULENCE MODELLING 825 

The previous analysis has one defect: it assumes that the solution exists and is smooth. It seems 
hard to prove that it is so. However Lewandowski et ~ 1 . ~ ~ 7 ' ~  have established a partial result for 
a simpler model. Their analysis is based on a new variable cp = c2/k3 which satisfies the following: 

Acp A0 ve.vcp 
cpe e 2  e2cp 

= ( 3 ~ ,  - 2 ~ , )  - + ~ ( C P  - c,) - + ( 2 1 ~ ~  - ~ O C , )  ~ 

IW2 IV8I2 
cp2e e - (SC, - 6 ~ , )  - - ( 2 4 ~ ~  - ~ O C , )  7 

The advantage of this equation over the k-equation is that in the absence of viscous terms (the 
right-hand side), it is explicit in log cp: 

1 
D,iogcp= - ( 3 c , - 2 c l ) ~ e - ( 2 c 2 - 3 ) - .  e 

Hence cp is always decreasing because 3c, - 2c, = 0.0188 and 2c2 - 3 = 0.84. 

5. A NUMERICAL METHOD FOR k-E 

By using what we know about the positivity of the k-E model, it is possible to build a stable 
multistep scheme which involves only linear systems at each time step and is yet unconditionally 
stable. 

At every time step, the Navier-Stokes equations are solved with vT and the boundary 
conditions computed at the previous time step. The equations for k-c are solved by a multistep 
algorithm involving one step of convection and one step of diffusion. However in this case the 
convection step is performed on k, 8 or cp, 8 rather than on k, E.  

The equation for 8 is integrated without diffusion: 

with 0;: = k,"/Er. The equation for cp = c2/k3 (see Section 3) is also integrated without diffusion: 

Then kr+'j2, cf:+ll2 are computed from the formulae 
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Finally the diffusion step is applied to k and E,  

w h )  + litc, (5 Vkr", 

Ve?", vwh) 

for all Wh E Qoh; & ? + I  - E r h  E Woh, kr+'  - krh E woh. 

Proposition 3. With Lagrangianfinite element of degree I on a triangulation without obtuse angle 
and with mass lumping on thefirst and last integrals in the diffusion step, the above scheme cannot 
produce negative values for kr+'  and ~r" .  

Prooj Each step produces positive values only. It is known15 that the maximum principle 
holds in the discrete case, with P' finite elements and triangles with sharp angles, for coercive 
operator, like the one in the diffusion step. 

Remark. This analysis can be extended to compressible k k . 1 6  

Numerical results are shown at the end of the paper with this method for the transonic bump 
and for a NACA0012 at high degree of incidence. 

6. TURBULENT TRANSPORT 

Reynolds' hypothesis is the key to turbulence modelling. Whether transport by a turbulent 
velocity field yields diffusion is being heavily studied by applied mathematicians.' 

6.1 The linear problem 

equation: 
The same problem arise in passive turbulent transport. Consider the linear convection diffusion 

8 , ~  + (U  + u')VC - PAC = 0 

It is known18 that if u' is a random stationary mixing process with U % ,,/m then C = ( c )  
satisfies 

a,c + (U  + U')VC - V . ( @  + M)VC) = 0 

with M = 4Jrrn (u ' (x  + U t )  0 u'(x)) dt. It is conjectured that the result holds also when U and 
u' are of the same order; however the formula for M is more complicated. There are counter 
examples to this results when u is not mixing or has zero mean.'9*20 Extensions to non-linear 
cases such as Navier-Stokes equations is an open problem, in general (see References 21-24). 

When oscillations are periodic or quasic-periodic and bounded in L 2 ,  the problem of finding 
an equation for the mean of the solution of a convection equation can be solved with tools 
of functional analysis such as compensated compactness25326 Young  measure^^^,^^ and 
H - m e a ~ u r e s ; ~ ~  but the results can be derived formally also by multiple-scales asymptotic 
expansions. 
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6.2. Compressible Euler in 1-D 

completely. Euler equations can be written in terms of entropy variables, i.e. 
In one dimension Serre3’ solved the closure problem for the compressible Euler equations 

1 
P 

(a, + udx)u + - axp = 0, (a, + U&)P + pc2&u = 0, (a, + u&)S = 0 

where c2  = y ( y  - l)e and S = log(pp-?). The system is integrated on R x]O, T’[ with initial 
conditions 

d o ,  x) = P’(x, Y), ~ ( 0 ,  x) = uo(x, Y), e(O, x) = e’(x, Y) 

where y is a parameter. The idea is to solve the system for all y instead of just y = X / E .  Then the 
solution depends upon y and the problem is to find a system of equations for U,p,$ where 

1 rY 
u = lim J u(x,  y)dy 

Y + a o  2 Y  - y  

Under certain conditions (no shocks, integrability. . .) the answer is 

1 (a, + Ud,)U + ~ axp = 0 
( P> 

The filter (. ) is defined on functions of p, S by 

Hence, with p = plireSiv 

and similarly for p - ’ c - *  and pcp(S), by the formulae: 

It is an integro-differential system which must be analysed further for practical applications. In 
particular when the intial conditions are quasi-periodic in y, the quantities ( p )  must be 
evaluated. Extension of the method to several space dimensions and to the Navier-Stokes 
equations can be found in References 30, 31 and 32. 
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6.3.  Multiple scales asymptotics 

Navier-Stokes equations of initial ‘turbulent’ conditions. Consider 
Finally multi-scale asymptotics can be helpful to analyse turbulent transport by the 

where wo(x,  y) is almost periodic in y and has zero y-mean. 
Here E is a length scale and not the rate of turbulent energy dissipation which will be called e; 

the turbulent kinetic energy k will also be called q and h will denote helicity. The choice p - ~ ’  for the 
vanishing viscosity is based on Kolmogorov’s scales. At time zero the kinetic turbulent energy is 
&213 qo = ( I wo 1 ’ ) and the rate of turbulent dissipation is c2l3eO = p ~ ~ / ~  ( IVY x wo I ’ ). The 
helicity is ~ - ~ ~ ~ h ~  = E - ~ ~ ~ ( w ~ . V ~ X  w o ) .  

If wo is isotropic and ho/qo is constant then it can be s h o ~ n ~ ~ , ~ ~  that u is approximatively the 
solution of 

d,u + ( u . V ) u  + V p  + - ~ ” ~ v . [ q ~ ( a ( x ,  t))rn(i)VaVaT] = 0, V . u  = 0 

d,a + u . V a  = 0, a(x ,  0) = x 

with i = E l ,  j d j a l d j a l ,  yo % 6, Po % 3 and 

This result is established without closure hypothesis. It is a two equations model like k--E but it 
involves the Lagrangian length scale a which is the position at time t of a particle which was at 
x at time 0. 

Although we do not reproduce the proof here, it agrees with the k--E model for an homogeneous 
free decaying turbulence, thus validating the &’/k hypothesis mentioned earlier. On the other 
hand, it seems to disprove Reynolds hypothesis because Reynolds’ tensor is a function of VaTVa 
instead of V u  + VuT. If the asymptotic expansion is pursued further then at the next level 
a viscous term, function of Vu is found. Nevertheless, it indicates the Reynolds hypothesis may not 
be the first order effect in a transient flow. 
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